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SECTION 1

3 INTRODUCTION

This report covers the past years work on a program sponsored by U.S. Department of

Defense to demonstrate that high-quality (100> GaAs/(OIT2)] sapphire (A120 3) epitaxy

3could be achieved.

GaAs, with the <100> surface orientation, is preferred both for monolithic surface
acoustic wave (SAW) and electronic device fabrication. The successful deposition of

<100> GaAs/<0IT2> AI2 0 3 is of great value because it would allow for the integration

of SAW and electronic devices on a common chip.

Metalorganic chemical vapor deposition (MO-CVD) was used for all depositions during

this work. Sapphire with an orientation of (01 T2 > was chosen for the substrate, since its

four-fold symmetry was expected to initiate <100 > epitaxial growth. The quality of the

GaAs films were characterized as a function of deposition temperature, As/Ga ratio and5 growth rate, in an attempt to optimize the deposition process.

The result that the films grown are of a < Ill> orientation, leads to the conclusion

that the <01 T2> orientation of the Al203 does not appear to have a significant effect on

determining the orientation of the films. This in turn leads to the belief that epitaxial

GaAs films could be deposited on other types of substrates, such as quartz.

d&



I SECTION 2

MO-CVD GROWTH SYSTEMS

All GaAs depositions were performed in our second MO-CVD system which is also

being used in a continuing program, funded by the Solar Energy Research Institute to

fabricate GaAs/GaAIAs heteroepitaxial structures.

The MO-CVD reactor, shown in Figure 1, features a microprocessor control system

and a rotating, vertical-geometry reaction chamber with a large growth area.

The MO-CVD growth chamber is shown schematically in Figure 2. The
pyramid-shaped susceptor has a growth area of 100 cm 2 and can hold five 2" wafers per

Ibatch. A rotating thermocouple inside the RF-heated susceptor provides for feedback

temperature control. The water-cooled fused-quartz vessel is sealed to the water-cooled

stainless steel baseplate by means of a double O-ring arrangement. The rotating

fused-quartz shaft is sealed to the baseplate by means of a custom-designed ferrofluid

g feedthrough.

The entire MO-CVD process sequence is controlled by a Westinghouse PC-900

programmable controller in conjunction with an IBM-PC resulting in a sophisticated

computer control system. This system allows for maximum ease of operation,

reproducibility, documentation capabilities, and continual monitoring of all. safety

conditions for operator safety.

The gas-delivery system consists of face-seal fittings and bellows valves

butt-welded to stainless steel tubing. A palladium-alloy purifier is used in the hydrogen

line and all flows are controlled by electronic mass flow controllers. A filtered-air

cabinet is provided in the wafer-loading area and organometallic sources are maintained

in temperature-stabilized cooling baths.

This MO-CVD reactor is designed to grow GaAs and GaAIAs over the entire alloy

range. Maximum doping levels are mid-101 8 range for N-type and about 1019 for p-type

GaAs. Growth rates can be varied from 0.01 to 2 pm/min and the growth temperature is

typically between 650*C and 800*C.

I 2-1
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SECTION 3

EXPERIMENTAL

3.1 SUBSTRATES

The sapphire (A120 3) substrates used for this work were supplied by Saphikon.(2)

They were all ( AIT2> 20 3 cut in 1" x I" squares with the front side polished to EPI

quality and the back side polished to an optical finish. Before loading, the substrates were

cleaned in acetone and methanol followed by a DI rinse. The substrates were then cleaned

in NH OH:H 20 2 :H2 0,2:1:10 for 30 seconds. Each sample was dipped in HF and rinsed just

prior to loading. A small piece of N+GaAs was also loaded each run for evaluation.

3.2 DEPOSITION STUDIES

Experiments were designed to determine the best conditions for the deposition of

GaAs on <01T2>Al 2 0 3. The growth parameters studied were deposition temperature,
1A As/Ga ratio and deposition rate. The deposited layers were evaluated and characterized

in terms of surface morphology, electronic quality and structural perfection.

3.2.1 Deposition Temperature

The first growth experiments were done to determine the optimum deposition

temperature. A series of runs were made at a fixed growth rate and As/Ga ratio while

the temperature was varied for each run. A 6-micron thick undoped layer was deposited

at each temperature. The growth conditions are shown in Table 1.

Each sample was evaluated by eye, Nomarski phase-contrast microscopy and by a

Sloan Dektak surface profiler. The samples grown at 600°C, 6200C, 6500 C all have a dull

mat-gray appearance to the eye and look polycrystalline when viewed by the Nomarski

microscope (Figure 3). The samples grown at 675*C, 700°C, 725*C, and 750°C all have a

smooth, reflective surface to the eye. The samples grown at 675*C, 700°C, and 7500C
when viewed by microscopy, reveal a large grain texture (Figure 4). The surface of the

sample grown at 725°C has a very definite crystalline appearance as can be seen by the

triangular morphology in Figure 5.

3-1
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(a) 600*C

(b) 6200C

(c) 650 0C

frFIGURE 3. NOMARSKI MICROGRAPHS OF 6 MICRON POLY-
0 CRYSTALLINE GaAs FILMS GROWN ON <0112> A1 20 3.
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(a) 6750C

(b) 7000C

(c) 750 0C

FIGURE 4. NOMARSKI MICROGRAPHS OF 6 MICRON HIGHLY
ORIENTED (111) GaAs FILMS GROWN ON <01T2> A1203.
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The samph mat-gray and appeared

polycrystalline

Selected sa t to Manlabs 3 for x-ray

diffraction anal aAs layers are oriented in

the (11l) directi pies grown at 650, 675,

7000, 72* all sh (333) reflection indicating

a highly orient

The sample indicating this sample is

somewhat polyc

The sample anlabs, revealed a slightly

sharper (11) p his probably indicates less

strain in the cry

The At 2 0 3  ion and a laue photograph

(Figure 6) which verified it was <01T2> AI 2 0 3 as expected.

FIGURE 6. LAUE PHOTOGRAPH OF <0IT2> A120 3.
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After examining the data from Manlabs, comparing photographs from the

microscope, examining the samples by eye and comparing Dektak measurements, it was

concluded that the sample grown at 7250 gave the best crystal. A highly oriented < 11 I >

GaAs layer with an average surface roughness of .5 microns.

3.2.2 Deposition Rate

A second series of growth experiments were done to determine how the deposition

rate effected the films. 7250 was the temperature chosen for this series of experiments

because it yielded the best crystal in the first series. The As/Ga ratio was kept constant.

Table 3 shows the growth conditions.

TABLE 3. GROWTH CONDITIONS TO DETERMINE OPTIMUM DEPOSITION RATE

Run Deposition As/Ga Ratio Deposition Layer
I Rate Temperature Thickness

I I 5.5A/sec 10:1 7250C 6 pm
2 22A/sec 10:1 7250C 6 pm
3 44 A/sec 10:1 7250C 6 pm

Samples were again examined and evaluated by eye and by microscopy. All

samples other than the one grown at 22A/sec appeared polycrystalline when viewed by
microscopy (Figure 7) and had the same mat-gray appearance by eye. The sample grown

at 22A/sec again appeared to be cyrstalline (Figure 8) and have a bright reflective surface

as before.

The above experiments led to the conclusion that the GaAs film quality is very

depended on the deposition rate. The optimum growth conditions after completing the

first two series of runs was deposition temperature 7250C, AsGa ratio 10:1 and deposition

rate of 22A/sec.

3-7
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FIGURE 7. NOMARSKI MICROGRAPH OF 6-MICRON POLY-
CRYSTALLINE GaAs FILM ON A1 203 GROWN WITH5. NON-OPTIMUM CONDITIONS.

IOpm

FIGURE 8. NOMARSKI MICROGRAPH OF 6-MICRON SINGLE CRYSTAL

GaAs FILM GROWN ON A1 203 WITH OPTIMUM CONDITIONS.
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3.2.3 As/Ga Ratio

A third series of runs were done to determine how the As/Ga ratio would effect the

film quality.

Two runs were made at the optimum temperature of 725 and growth rate of

22A/sec. The growth conditions are shown in Table 4.

TABLE 4. GROWTH CONDITIONS TO DETERMINE EFFECT OF
As/Ga RATIO ON FILM QUALITY

Run Deposition As/Ga Ratio Deposition Layer
# Rate Temperature Thickness

1 22 A/sec. 20:1 725°C 6 pm
2 22 A/sec. 5:1 7250C 6 pm

Samples grown at both the above As/Ga ratios are mat-gray and looked

polycrystalline under the microscope.

3.2.4 Effects of Deposition Temperature on Orientation

One run was made to determine if a high deposition temperature would possibly

enhance (100> growth due to the high energy level of the GaAs atoms. The run was

made at 8250C with optimum growth conditions (deposition rate=22A/sec, As/Ga

ratio=10:l). This sample also looks mat-gray and polycrystalline by microscopy.

L_
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SECTION4

MEASUREMENTS

3 4.1 X-RAY DIFFRACTION

Selected samples were again sent to Manlabs for x-ray diffraction. Along with the

GaAs/(01T2) samples, one GaAs/0001 A12 0 3 sample was also sent. This sample was grown

during one of the runs with optimum growth conditions and was used as a comparison.

VA<0001> A12 0 3 is known to initiate < Il> GaAs growth from previous work done at Spire

which was funded by industry and has been reported elsewhere. (1 ) Data from Manlabs

reinforced the first findings that the sample grown at the optimum settings of 725% AsGa

ratio 10:1 and deposition rate of 22 A second is the best crystal. They concluded that this

sample is a single crystal layer with a <Ill> orientation. It was also found that there is

very little difference if any between the layer grown on <0001> A12 0 3 and <01712>

A120 3 both layers are < I ll> single crystal GaAs.

The best samples were then chosen for closer examination. Electronic qualities

were attempted to be measured by Hall effect measurement. Defect populations were

examined by transmission electron microscopy (TEM). The purity and autodoping were

investigated by secondary ion mass spectroscopy (SIMS). A measurement of the doping

level was attempted by Polaron C-V profilometry.

One sample was used for all the above measurements. The sample used was grown

at the optimum conditions, 725*C, As/Ga ratio=10:l and growth rate of 22A/sec. It was

sectioned as needed for each measurement.

4.2 MOBILITY

A mobility measurement was attempted by Hall effect. This proved to be

unsuccessful due to the fact that the resistivity (P) of the layer is too high (Figure 9) for

our Hall setup, which is sensitivity limited by its small magnet.

4.3 TEM

A section was sent to ARACOR ( 4 ) for examination by TEM. ARACOR verified

that the crystal is a (111) crystal, however they did detect some evidence of
polycrystallinity. -1



I Sample: Van der Pauw Hall configuration ICM X ICM

3 Room light oniy

V l0V 109
r lOnA

RSH : 4.53 V 4.53 X 109
r

Rsht = 2.27 X L06

FIGURE 9. GaAs ON SAPPHIRE - RESISTIVITY MEASUREMENT. Top4 Illuminated, Bottom Dark.

Figure 10 A and B shows a grain which is of a different orientation then the

surrounding <Ill> region. As can be seen, the grain is rotated with respect to the

matrix. This is also confirmed by the extra non-symetric spot in the laue photograph

(Figure 10A). Aracor was not able to determine the orientation of this grain. The sample

also has a high density of stacking faults around 107 cm- 2 calculated from the

t micrographs (Figure I I A and B).

1 4-2
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FIGURE 10-A.

FIGURE 10-B. TEM MICROGRAPHS OF <11D> GaAs FILM ON (0112>
A1 20 3 - 4-3
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FIGURE I11-A.

Af

FIGURE IlI-B. TEM MICROGRAPHS OF STACKING FAULTS IN 6-MICRON
GaAs FILM GROWN ON <0112 A12 03.
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4.4 SIMS

Another section was sent to Northern Analytical Lab5 for examination by SIMS. A
depth-profile was taken through the GaAs layer into the At 2 0 3 substrate. The profile

(Figure 12) shows the plots for As, Ga, Al, C, SI and K. As can be seen there is an Al

spike at the GaAs/A12 0 3 interface which quickly disappears early into the GaAs layer.

Northern Analytical believes that the Al spike in the GaAs layer is not actually there, but

was just an artifact of the measurement due to a charge build up at the surface of the

A1 20 3. The Al in the first portion of the GaAs film is believed to be real and quickly

dissipates as mentioned above.

4.5 POLARON C-V

An attempt was made to measure the carrier concentration of the best film using a

Polaron profile plotter. The carrier concentration is calculated from the

capacitance-voltage data taken from a Schottky barrier formed between the GaAs film

and an electrolyte solution. Omic contact must be made either to the back of the
substrate or to the deposited film in order for the Polaron to operate. Due to the

insulating nature of the A12 03 substrate and the highly resistive grown layer, omic contact

could not be achieved so the carrier concentration could not be measured.

1 4-5
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SECTION 5

SUMMARY

The conclusions, observations and results of the past year are as follows:

I. A reproducible process for depositing <11l> single crystal GaAs on <01T2>

A12 0 3 has been developed using the MO-CVD technique. The reason for the films

being of <1 Il> orientation instead of the proposed <100> orientation must still

be investigated.

2. The <0IT2> orientation of the AI 2 0 3 substrate did not appear to have a

significant effect on determining the < I ll > orientation of the GaAs films.

3. The best films grown are highly reflective to the eye and have a surface roughness

of approximately .4 microns.

4. Deposition temperature, GaAs ratio and deposition rate, all affected the quality of

the films.

7 -25. The defect density of the films is approximately 10 cm . More work is needed

to improve the films.

6. The SIMS profile showed very little autodoping or contamination in tie GaAs films

attributed to the Al20 3 substrate.

5-1
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